Dosage de la vitamine C

Version adaptée :

L'acide ascorbique, couramment dénommé vitamine C est présent dans de nombreux fruits et légumes. L'acide ascorbique a pour formule brute $C_6H_8O_6$.

1. Etude d'une réaction entre l'acide ascorbique et la soude (ou hydroxyde de sodium)

On réalise une réaction très rapide entre une solution aqueuse d'acide ascorbique de concentration molaire en soluté apporté $C_A = 1,00 \times 10^{-2} \text{ mol.L}^{-1}$ et une solution aqueuse d'hydroxyde de sodium de concentration molaire en soluté apporté $C_B = 2,00 \times 10^{-2} \text{ mol.L}^{-1}$.

Pour cela, on mélange un volume V_A = 20,0 mL de solution d'acide ascorbique et un volume V_B = 5,0 mL de solution d'hydroxyde de sodium.

- 1.1. Ecrire l'équation traduisant cette réaction. Identifier les couples acido-basiques mis en jeu.
- **1.2**. Le mélange est étudiée à 25°C. Le pH du mélange réalisé est égal à 4,0. Calculer la concentration en ions oxonium H_3O^+ dans le mélange.
- **1.3**. A 25°C, le produit ionique de l'eau étant $K_e = 1.0 \times 10^{-14}$, calculer la concentration en ions hydroxyde HO dans la solution.
- 1.4. Compléter le tableau descriptif de la réaction chimique étudiée précédemment, donné ci-dessous.

Equation de la réaction		
Etat du système	Avancement	Quantité de matière en moles
Etat initial		
Etat final		
Etat d'avancement maximal		

1.5. La transformation peut-elle être considérée comme totale ? Justifier le fait qu'elle puisse servir de support à un dosage.

2. Dosage d'un comprimé de vitamine C

On écrase un comprimé de vitamine C500 dans un mortier. On dissout la poudre dans de l'eau distillée de façon à obtenir 100,0 mL de solution .On prélève un volume $V_A = 10,0$ mL de cette solution que l'on dose par une solution aqueuse de soude de concentration $C_B = 2,00 \times 10^{-2}$ mol.L⁻¹. L'équivalence atteinte lorsqu'on a versé un volume $V_B = 14,4$ mL de solution de soude.

- **2.1.** Avec quelle verrerie prélève-t-on le volume V_A ?
- 2.2. Définir l'équivalence.
- 2.3. Calculer la quantité d'acide ascorbique présente dans les 10,0 mL de solution dosée.
- **2.4.** En déduire la masse d'acide ascorbique contenu dans un comprimé. Justifier l'indication du fabricant « vitamine C 500 ».

Données: masses molaires atomiques en g.mol⁻¹: M(C) = 12; M(O) = 16; M(H) = 1

Version initiale

L'acide ascorbique, couramment dénommé vitamine C est présent dans de nombreux fruits et légumes. L'acide ascorbique a pour formule brute $C_6H_8O_6$.

1. Etude d'une réaction entre l'acide ascorbique et la soude (ou hydroxyde de sodium)

On réalise une réaction très rapide entre une solution aqueuse d'acide ascorbique de concentration molaire en soluté apporté $C_A = 1,00 \times 10^{-2} \text{mol.L}^{-1}$ et une solution aqueuse d'hydroxyde de sodium de concentration molaire en soluté apporté $C_B = 2,00 \times 10^{-2} \text{ mol.L}^{-1}$.

Pour cela, on mélange un volume V_A = 20,0mL de solution d'acide ascorbique et un volume V_B = 5,0mL de solution d'hydroxyde de sodium.

- 1.1. Ecrire l'équation traduisant cette réaction. Identifier les couples acido-basiques mis en jeu.
- **1.2**. Le mélange est étudiée à 25° C. Le pH du mélange réalisé est égal à 4,0. Calculer la concentration en ions oxonium H_3O^+ dans le mélange.
- **1.3**. A 25°C, le produit ionique de l'eau étant $K_e = 10^{-14}$, calculer la concentration en ions hydroxyde HO dans la solution.
- 1.4. Compléter le tableau descriptif de la réaction chimique étudiée précédemment, donné ci-dessous.

Equation de la réaction		
Etat du système	Avancement	Quantité de matière en moles
Etat initial		
Etat final		
Etat d'avancement maximal		

1.5. La transformation peut-elle être considérée comme totale ? Justifier le fait qu'elle puisse servir de support à un dosage.

2. Dosage d'un comprimé de vitamine C

On écrase un comprimé de vitamine C500 dans un mortier. On dissout la poudre dans de l'eau distillée de façon à obtenir 100,0 mL de solution .On prélève un volume $V_A = 10,0$ mL de cette solution que l'on dose par une solution aqueuse de soude de concentration $C_B = 2,00 \times 10^{-2} \text{mol.L}^{-1}$. L'équivalence atteinte lorsqu'on a versé un volume $V_B = 14,4$ mL de solution de soude.

- 2.1. Définir l'équivalence.
- 2.2. Calculer la quantité d'acide ascorbique présente dans les 10,0 mL de solution dosée.
- **2.3**. En déduire la masse d'acide ascorbique contenu dans un comprimé. Justifier l'indication du fabricant α vitamine C 500 ».

Données: masses molaires atomiques en g.mol⁻¹: M(C) = 12; M(O) = 16; M(H) = 1